Supporting Information for:

Selective Phosphitylation of the Primary Hydroxyl Group in Unprotected Carbohydrates and Nucleosides

Steven M. Graham and Sarah C. Pope

Experimental Section

General. Acetonitrile was distilled from CaH₂. Carbohydrates 1a and 1b (Chapeau, M.-C.; Marnett, L.J. J. Org. Chem. 1993, 58, 7258) and phosphoramidite 3a (Bannwarth, W.; Trzeciak, A. Helv. Chim. Acta. 1987, 70, 175; Pederson, R.L.; Esker, J.; Wong, C.-H. Tetrahedron. 1991, 47, 2643) were prepared as described. The synthesis of nucleoside 1d will be reported in due course (Graham, S.M.; Spinnato, D.S. Unpublished results.). All other carbohydrates and reagents were commercially available. The starting carbohydrate and tetrazole were dried together by evaporating three times from dry acetonitrile. All reactions were performed under an atmosphere of dry nitrogen; solutions of phosphoramidites in CH₃CN were added to the reaction using a syringe pump and gastight syringes. 1 H (300 MHz) and 13 C (75) MHz) NMR spectra were obtained in CDCl₃ solvent and referenced to internal tetramethylsilane or the residual solvent peak unless otherwise stated; ³¹P NMR spectra were referenced to external 85% H_3PO_4 in D_2O_4 . The proton and carbon assignments for **2b** were made with the aid of DQF COSY and HMQC spectra (not shown); the assignments for the remaining compounds are in accord with these assignments but should be regarded as tentative. In all cases, identification of the primary hydroxyl group as the site of phosphorylation was confirmed using the Attached Proton Test as described in the article text.

bis(2-Cyanoethyl) (Pent-4-enyl β-D-ribofuranos-5-yl) Phosphate (2b). To a stirred solution of pent-4-envl β-D-ribofuranoside (1b, 91 mg, 0.42 mmol) and 5-(p-nitrophenyl-1Htetrazole (5-NPT, 4b, 185 mg, 0.97 mmol) in CH₃CN (17 mL) at -36 °C was added dropwise (0.02 mmol/min) a 0.45 M solution of bis(2-cyanoethyl) N,N-diisopropylaminophosphoramidite (3a, 0.73 mL, 0.33 mmol) in CH₃CN, and the resulting solution was stirred for 20 minutes. A 0.95 M solution of *tert*-butyl hydroperoxide (TBHP, 4.0 mL, 3.8 mmol) in CH₂Cl₂ was then added, and the reaction was warmed to room temperature with a water bath. After stirring for 20 minutes, the reaction solution was evaporated to a small volume (~2-4 mL) and diluted with an equal volume of CH₂Cl₂. The crude product was then loaded onto a silica gel column and eluted with a step gradient of 60:40 CH₂Cl₂:ethyl acetate (MC:EA) to 100:0 MC:EA, followed by 90:10 EA:EtOH, vielding phosphate **2b** (0.20 mmol, 59 % based on limiting phosphoramidite; 81% based on total recovered carbohydrate) and recovered starting material (**1b**, 0.14 mmol). ¹H-NMR (δ , 600 MHz): 5.807 (ddt, J = 17.1, 13.2, 6.6 Hz, 1H, H4), 5.028 (dq, J = 17.1, 1.6 Hz, 1H, H5), 4.976 (ddt, J = 10.3, 2.0, 1.3 Hz, 1H, H5), 4.942 (s, 1H, H1'), 4.328 (dt, J = 8.1, 6.1 Hz, 2H, -*CH*₂CH₂CN), 4.325 (dt, *J* = 8.1, 6.1 Hz, 2H, -*CH*₂CH₂CN), 4.290 (ddd, *J* = 10.9, 8.2, 4.5 Hz, 1H, H5' or H5"), 4.262 (t, J = 5.3 Hz, 1H, H3'), 4.216 (ddd, J = 10.9, 9.1, 5.9 Hz, 1H, H5' or H5"), 4.145 (app. q, $J \sim 6.2$ Hz, 1H, H4'), 4.030 (d, J = 4.9 Hz, 1H, H2'), 3.719 (dt, J = 9.6, 6.6Hz, 1H, H1), 3.563 (s, 1H, -OH), 3.409 (dt, J = 9.6, 6.6 Hz, 1H, H1), 3.209 (s, 1H, -OH), 2.807 $(td, J = 6.1, 1.0 Hz, 4H, 2 x - CH_2CH_2CN), 2.100 (q, J = 7.0 Hz, 2H, H3), 1.655 (quin, J = 6.6 Hz)$ 2H, H2). ¹³C-NMR (δ): 138.097 (C4), 116.578 (-CH₂CH₂CN), 115.045 (C5), 107.366 (C1'),

80.992 (d, ${}^{3}J_{POCC} = 6.9$ Hz, C4'), 75.027 (C2'), 71.931 (C3'), 69.701 (d, ${}^{2}J_{POC} = 6.0$ Hz, C5'), 67.561 (C1), 62.469 (d, ${}^{2}J_{POC} = 5.7$ Hz, $-CH_{2}CH_{2}CN$), 30.062 (C3), 28.575 (C2), 19.583 (d, ${}^{3}J_{POCC} = 8.0$ Hz, $-CH_{2}CH_{2}CN$). ${}^{31}P$ -NMR (δ , 162 MHz): -0.550.

bis(2-Cyanoethyl) (Pent-4-enyl α-D-ribofuranos-5-yl) Phosphate (2a). To a stirred solution of pentenyl α-D-riboside 1a (71.9 mg, 0.33 mmol) and 5-NPT (4b, 151.2 mg, 0.79 mmol) in CH₃CN (17 mL) at -36 °C was added dropwise (0.02 mmol/min) a 0.47 M solution of phosphoramidite 3a (530 µL, 0.25 mmol) in CH₃CN. After the addition the resulting solution was stirred for an additional 20 minutes at -36 °C. A 0.95 M TBHP solution (1.3 mL, 1.2 mmol) in CH₂Cl₂ was then added, and the reaction temperature was raised to RT and stirred for 20 minutes. The reaction solution was then evaporated to a minimum volume (~2-4 mL) and diluted with an equal volume of CH₂Cl₂. The crude product was then loaded onto a silica gel column and eluted as described above, yielding phosphate 2a (0.14 mmol, 55% based on limiting phosphoramidite; 92% based on total recovered carbohydrate) and recovered starting material (**1a**, 0.17 mmol). ¹H-NMR (δ): 5.792 (ddt, J = 17.0, 13.2, 6.6 Hz, 1H, H4), 5.06-4.95 (m, 3H, =CH₂ and H1'), 4.33-4.23 (m, 6H, H5', H5" 2 x -CH₂CH₂CN), 4.13-4.06 (m, 2H, H4', H3'), 3.951 (dd, J = 6.6, 4.4 Hz, 1H, H2'), 3.813 (dt, J = 9.8, 6.6 Hz, 1H, H1), 3.520 (dt, J = 9.6, 6.6 Hz, 1H, H2)H1), 3.02 (bs, 2H, 2 x OH), 2.785 (tt, J = 6.1, 1.0 Hz, 4H, 2 x -CH₂CH₂CN), 2.114 (app. q, J ~ 6.6 Hz, 2H, H3), 1.713 (app. quint., $J \sim 6.7$ Hz, 2H, H2). ¹³C-NMR (δ): 137.900 (C4), 116.441 (-CH₂CH₂CN), 115.167 (C5), 101.569 (C1'), 81.917 (d, ³ $J_{CCOP} = 6.8$ Hz, C4'), 70.899 (C2'), 70.186 (C3'), 68.077 (C1), 67.872 (d, ${}^{2}J_{COP} = 5.7$ Hz, C5'), 62.364 (d, ${}^{2}J_{COP} = 5.7$ Hz, -*CH*₂CH₂CN), 30.077 (C3), 28.484 (C2), 19.522 (d, ${}^{3}J_{CCOP} = 8.0$ Hz, -CH₂CH₂CN). 31 P-NMR (δ,162 MHz): -4.6.

bis(2-Cyanoethyl) (*n*-Octyl β-D-glucopyranos-5-yl) Phosphate (2c). To a stirred solution of *n*-octyl β-D-glucopyranoside (1c, 115.2 mg, 0.39 mmol) and 5-NPT (4b, 182.4 mg, 0.95 mmol) in CH₃CN (30 mL) at -36 °C was added dropwise (0.02 mmol/min) a 0.43 M solution of phosphoramidite **3a** (760 µL, 0.33 mmol) in CH₃CN. After the addition the resulting solution was stirred for an additional 20 minutes at -36 °C. A 0.88 M solution of TBHP (1.8 mL, 1.4 mmol) in CH₂Cl₂ was then added, and the reaction temperature was raised to RT and stirred for 20 minutes. The reaction solution was then evaporated to a minimum volume (~2-4 mL) and diluted with an equal volume of CH_2Cl_2 . The crude product was then loaded onto a silica gel column and eluted as described above, yielding phosphate 2c (0.18 mmol, 54% based on limiting phosphoramidite; 91% based on total recovered carbohydrate) and recovered starting material (1c, 0.18 mmol). ¹H-NMR (δ , DMSO-d₆ + D₂O): 4.296 (ddd, J = 11.0, 6.3, 1.6 Hz, 1H, H6' or H6"), 4.26-4.19 (m, 5H, -CH₂CH₂CN and H1'), 4.131 (ddd, J = 11.0, 7.9, 5.6 Hz, 1H, H6' or H6"), 3.732 (dt, J = 9.6, 6.8 Hz, 1H, $-CH_2(CH_2)_6CH_3$), 3.457 (dt, J = 9.6, 6.8 Hz, 1H, - $CH_2(CH_2)_6CH_3$, 3.41-3.37 (m, 1H, H5'), 3.208 (t, 1H, J = 9.0 Hz), 3.119 (app. t, $J \sim 9.4$ Hz), and 2.990 (dd, J = 9.0, 7.9 Hz) (3H, H2', H3', and H4'), 2.925 (t, J = 5.6 Hz, 4H, 2 x -CH₂CN), 1.508 (quint, J = 7.1 Hz, 2H, -CH₂CH₂(CH₂)₅CH₃), 1.274 (bs, 10H, -CH₂CH₂(CH₂)₅CH₃), 0.861 (t, 3H, J = 6.6 Hz, -CH₃). In a sample without D₂O the following were observed: 5.225 (bs, 1H, -OH), 5.066 (bs, 2H, 2 x -OH). ¹³C-NMR (δ, DMSO-d₆): 118.778 (CN), 103.355 (C1'), 76.751 (C3'), 74.573 (d, ${}^{3}J_{CCOP} = 6.0$ Hz, C5'), 73.785 (C4'), 69.840, 69.688 (C2' and $-CH_{2}(CH_{2})_{6}CH_{3}$), 68.004 $(d, {}^{2}J_{COP} = 5.0 \text{ Hz}, \text{C6'}), 63.184 (d, {}^{2}J_{COP} = 5.0 \text{ Hz}, -CH_{2}\text{CH}_{2}\text{CN}), 63.181 (d, {}^{2}J_{COP} = 5.0 \text{ Hz}, -CH_{2}\text{CH}_{2}\text{CN})$

*CH*₂CH₂CN), 31.924, 29.891, 29.512, 29.337, 26.136, 22.783 (octyl CH₂'s), 19.692 (d, ${}^{3}J_{CCOP} = 6.9$ Hz, -*CH*₂CN), 14.643 (CH₃). 31 P-NMR (δ , 162 MHz, DMSO-d₆): 0.317.

Dibenzyl (4-O-(2,6-Dimethylphenyl)-2'-deoxyuridin-5'-yl) Phosphate (2d). To a stirred solution of 4-O-(2,6-dimethylphenyl)-2'-deoxyuridine (1d, 166.8 mg, 0.50 mmol) and 5-NPT (4b, 198 mg, 1.04 mmol) in CH₃CN (40 mL) at -36 $^{\circ}$ C was added dropwise (0.02 mmol/min) a 0.47 M solution of dibenzyl N,N-diisopropylaminophosphoramidite (3b, 890 µL, 0.42 mmol) in CH₃CN. After the addition the resulting solution was stirred for an additional 20 minutes at -36 ^oC. A 0.77 M solution of TBHP (2.3 mL, 1.7 mmol) in CH₂Cl₂ was then added, and the reaction temperature was raised to RT and stirred for 20 minutes. The reaction solution was then evaporated to a minimum volume (~2-4 mL) and diluted with an equal volume of CH₂Cl₂. After the suspended solid was removed by filtration through a bed of sand the crude product was loaded onto a silica gel column and eluted with a step gradient of 98:2 to 90:10 CHCl₃ EtOH, yielding phosphate 2d (0.29 mmol, 69% based on limiting phosphoramidite; 75% based on total recovered carbohydrate) and recovered starting material (**1b**, 0.09 mmol). ¹H-NMR (δ , 400 MHz): 8.007 (d, J = 7.4 Hz, 1H, H6), 7.39-7.32 (m, 10H, 2 x CH₂Ph), 7.036 (s, 3H, Me₂ArH₃), 6.191 (t, J = 6.1 Hz, 1H, H1'), 5.880 (d, J = 7.4 Hz, 1H, H5), 5.10-5.00 (m, 4H, 2 x -*CH*₂Ph), 4.24-4.12 (m, 3H, H3', H5', H5"), 4.043 (app. quintet, J ~ 3.3 Hz, 1H, H4'), 3.4-3.0 (bs, 1H, OH), 2.507 (ddd, J = 13.8, 6.0, 4.7 Hz, 1H, H2' or H2"), 2.101 (s, 6H, ArMe₂) 1.911 (dt, J = 13.8, 6.4 Hz, 1H, H2' or H2"). ¹³C-NMR (δ, 100 MHz): 170.655, 155.544, 148.990, 143.885 (C6), 135.924 (d, ${}^{3}J_{CCOP}$ = 6.9 Hz, Benzyl C1), 130.116, 128.857, 128.834, 128.690, 128.675, 128.045, 128.008 (Ar CH), 125.868 (DMP C4), 94.303 (C5), 86.801 (C1'), 84.784 (d, ${}^{3}J_{CCOP} = 7.6$ Hz, C4'), 70.097 (C3'), 69.728 (d, ${}^{2}J_{COP} = 5.3$ Hz, CH₂Ph), 69.699 (d, ${}^{2}J_{COP} = 5.3$ Hz, CH₂Ph), 66.558 (d, ${}^{2}J_{COP} = 5.3$ Hz, C5'), 41.179 (C2'), 16.389 (Ar Me_2). ³¹P-NMR (δ , 162 MHz): -2.92.

Dibenzyl (Pent-4-enyl β-D-ribofuranos-5-yl) Phosphate (2e). To a stirred solution of pentenyl β-D-riboside 1b (80.8 mg, 0.37 mmol) and 5-NPT (4b, 167.7 mg, 0.88 mmol) in CH₃CN (17 mL) at -36 °C was added dropwise (0.02 mmol/min) a 0.38 M solution of dibenzyl N,N-diisopropylaminophosphoramidite (**3b**, 650 µL, 0.25 mmol) in CH₃CN. After the addition the resulting solution was stirred for an additional 20 minutes at -36 °C. A 0.95 M solution of TBHP (675 µL, 0.64 mmol) in CH₂Cl₂ was then added, and the reaction temperature was raised to RT and stirred for 20 minutes. The reaction solution was then evaporated to a minimum volume (~2-4 mL) and diluted with an equal volume of CH₂Cl₂. The crude product was then loaded onto a silica gel column and eluted with a step gradient of 90:10 to 0:100 MC:EA, yielding phosphate **2e** (0.17 mmol, 70% based on limiting phosphoramidite; 80% based on total recovered carbohydrate) and recovered starting material (**1b**, 0.12 mmol). ¹H-NMR (δ): 7.4-7.2 (m, 10H, 2 x Ph), 5.758 (ddt, J = 16.9, 13.3, 6.7 Hz, 1H, H4), 5.047 (d, J = 8.2 Hz, 2H, -*CH*₂Ph), 5.043 (d, J = 8.1 Hz, 2H, -*CH*₂Ph), 5.02-4.92 (m, 2H, =CH₂, overlap with -CH₂Ph and H1'), 4.918 (s, 1H, H1'), 4.219 (t, 1H, J = 5.4 Hz, H3'), 4.10-4.07 (m, 3H, H4', H5', H5"), 4.014 (d, J = 4.7 Hz, 1H, H2'), 3.881 (bs, 1H, OH) 3.647 (dt, J = 9.6, 6.6 Hz, 1H, H1), 3.344 (dt, J = 9.6, 6.6 Hz, 1H, H1), 3.130 (bs, 1H, OH) 2.031 (qt, J = 6.6, 1.2 Hz, 2H, H3), 1.583 (quin, J = 6.6 Hz, 2H, H2). ¹³C-NMR (δ): 138.036 (C4), 135.411 (d, ${}^{3}J_{CCOP} = 5.7$ Hz, benzyl C1), 128.779, 128.703, 128.066, 124.348 (Ar CH), 114.909 (C5), 107.215 (C1'), 81.098 (d, ${}^{3}J_{CCOP} = 7.6$ Hz, C4'), 75.103 (C2'), 71.947 (C3'), 69.693 (d, ${}^{2}J_{COP} = 5.7$ Hz, C5'), 68.790 (d, ${}^{2}J_{COP} = 6.9$ Hz, CH₂Ph), 67.318 (C1), 30.112 (C3), 28.572 (C2). 31 P-NMR (δ , 162 MHz): -3.438. **Preparation of Phosphate 2b using 5-Methylthio-1***H***-tetrazole (5-MTT, 4c).** To a stirred solution of pentenyl β -D-riboside **1b** (91.2 mg, 0.42 mmol) and 5-MTT (117.3 mg, 1.01 mmol) in CH₃CN (20.5 mL) at -36 °C was added dropwise (0.02 mmol/min) a 0.40 M solution of phosphoramidite **3a** (825 µL, 0.33 mmol) in CH₃CN. After the addition the resulting solution was stirred for an additional 20 minutes at -36 °C. A 1.1 M solution of TBHP (3.5 mL, 3.85 mmol) in CH₂Cl₂ was then added, and the reaction temperature was raised to RT and stirred for 20 minutes. The reaction solution was then evaporated to a minimum volume (~2-4 mL) and diluted with an equal volume of CH₂Cl₂. The crude product was then loaded onto a silica gel column and eluted as described above, yielding phosphate **2b** (0.20 mmol, 62% based on limiting phosphoramidite; 87% based on total recovered carbohydrate) and recovered starting material (**1b**, 0.16 mmol).

Preparation of Phosphate 2b using 1*H***-Tetrazole (4a).** To a stirred solution of pentenyl β-D-riboside **1b** (68.8 mg, 0.32 mmol) and tetrazole (**4a**, 55.1 mg, 0.79 mmol) in CH₃CN (20.5 mL) at -36 °C was added dropwise (0.02 mmol/min) a 0.40 M solution of phosphoramidite **3a** (625 μL, 0.25 mmol) in CH₃CN. After the addition the resulting solution was stirred for an additional 50 minutes at -36 °C. A 0.94 M solution of TBHP (0.6 mL, 0.6 mmol) in CH₂Cl₂ was then added, and the reaction temperature was raised to RT and stirred for 20 minutes. The reaction solution was then evaporated to a minimum volume (~2-4 mL) and diluted with an equal volume of CH₂Cl₂. The crude product was then loaded onto a silica gel column and eluted as described above, yielding phosphate **2b** (0.08 mmol, 31% based on limiting phosphoramidite; 86% based on total recovered carbohydrate) and recovered starting material (**1b**, 0.20 mmol).

Preparation of Phosphate 2b, large scale. To a stirred solution of pentenyl β -D-riboside **1b** (1.02 g, 4.7 mmol) and 5-NPT (**4b**, 2.13 g, 11.1 mmol) in CH₃CN (230 mL) at -36 °C was added dropwise (0.2 mmol/min) a 0.5 M solution of phosphoramidite **3a** (7.0 mL, 3.5 mmol) in CH₃CN. After the addition the resulting solution was stirred for an additional 20 minutes at -36 °C. A 0.88 M solution of TBHP (18.8 mL, 16.5 mmol) in CH₂Cl₂ was then added, and the reaction was warmed to room temperature with a water bath. After stirring for 20 minutes, the reaction solution was evaporated to a small volume (~15-20 mL) and diluted with an equal volume of CH₂Cl₂. After the suspended solid was removed by filtration through a bed of sand the crude product was loaded onto a silica gel column and eluted as described above, yielding phosphate **2b** (2.29 mmol, 65% based on limiting phosphoramidite; 80% based on total recovered carbohydrate) and recovered starting material (**1b**, 1.43 mmol).